NASA TECHNICAL NOTE

NASA TN D-2692

ON THE GENERAL PERTURBATIONS
OF “THE POSITION VECTORS
OF A PLANETARY SYSTEM

by Peter Musen

Goddard Space Flight Center
Greenbelt, Md,

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C.

i

e MARCH 1965

NASA TN D-2692

WN ‘g4v)i AtvHalT HO3L



TECH LIBRARY KAFB, NM

AT

0079741

ON THE GENERAL PERTURBATIONS OF THE
POSITION VECTORS OF A PLANETARY SYSTEM
By Peter Musen

Goddard Space Flight Center
Greenbelt, Md.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For 7sc||e by the Office of Technical Services, Department of Commerce,
Washington, D.C. 20230 -- Price $1.00



ON THE GENERAL PERTURBATIONS OF THE
POSITION VECTORS OF A PLANETARY SYSTEM

by
Peter Musen
Goddard Space Flight Center

SUMMARY

A theory of the general perturbations of a planetary system is developed in this
article.

The perturbations of the position vector of each planet are expanded into series
arranged in powers and products of the masses m,, m,, ---, m,  of the planets consti-
tuting the system. Perturbations of different orders are obtained in the form of series
containing the purely periodic, the secular, and the mixed terms in accordance with
standard astronomical practice. The influence of the lower order perturbations on the
other ones is determined.

Typical differential equations are formed to determine those perturbations of the
ith planet which are proportional to m , mm , mmm_, ---. The right sides of these
differential equations are obtained as the corresponding terms in the Maxwellian expan-
sion of the gravitational forces in terms of multipoles. The momenta of these multipoles
are the perturbations of all possible orders.

The explicit calculation is carried out here for the perturbations of the first, second,
and third orders; and the procedure for determining the higher order perturbations is
outlined.

Decomposing each perturbation of any particular planet m, along the undisturbed
position vector T, , along the undisturbed velocity v,, and along the unit vector Tz'i nor-
mal to the undisturbed orbital plane, we reduce the differential equations to a form easily
integrable by quadratures. After the integration, it is more convenient in practical appli-
cations to replace this decomposition of perturbations by the decomposition along T,
R,xT,, and R, . The problem of the constants of integration is treated for the case of the
mean elements. The results given here extend and generalize the author's previous re-
sults to the case of the whole planetary system. The method suffers, however, from dis-
advantages common to all astronomical methods of the general planetary perturbations:

It is not applicable to a pair of planets if their orbits approach each other very closely.
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ON THE GENERAL PERTURBATIONS OF THE
POSITION VECTORS OF A PLANETARY SYSTEM*

by
Peter Musen
Goddavrd Space Flight Center

INTRODUCTION

A theory of the general perturbations of a planetary system is developed. The perturbations
in the position vector of each planet are developed into a series in powers and products of the
disturbing masses and into a series containing the periodic, the secular, and the mixed terms with
respect to time.

Such a way of representing the integrals of the disturbed motion is in accordance with stand-
ard astronomical practice. From the purely mathematical standpoint, this solution can be affected
by all the difficulties associated with the near-resonance conditions caused by the small divisors.

We establish the differential equations for perturbations proportional to the powers and prod-
ucts of masses in a form integrable by quadratures. The explicit calculation is carried out through
the perturbations of the third order. In our planetary system it is rarely necessary to include the
perturbations of the fourth and higher orders. However, an outline of the procedure for including
the perturbations of these higher orders is indicated here.

The problem of a direct determining of the general perturbations in the position vectors,
including the effects of higher orders, became possible only in recent years with the advent of
electronic computers. By decomposing the perturbations ¥, along the directions of ¥,, v,, and
R, (Reference 1), we can integrate the variational equation of the problem by Hill's (Reference 2)
procedure directly without resorting to the method of variation of astronomical constants. We
shall use here the same decomposition as an intermediary step; but the final decomposition of the
perturbations will be along 7, iz'ix"r'i , and Iii, to reduce the components of the disturbing term on
the right side of the variational equation to a simple form. In computing the higher order pertur-
bations, it will be necessary to expand the disturbing forces in powers of perturbations in the
position vectors. Maxwell's method of expanding the electrostatic potential in terms of multipoles
by employing symbolic operators (Reference 3) can be used profitably also in planetary theories.
In our exposition the moments of the multipoles are the perturbations of different orders of the

*Also to be published in J. des Observ.



position vectors. Evidently any other way of expanding the disturbing forces in terms of the per-
turbations of the position vectors will lead to a duplication of Maxwell's expansion, but through a

more laborious writing.

In the theory of perturbations of the position vectors, economy of theoretical thinking as well
as economy of computing machine time is achieved because a set of homogeneous operations is
being constantly repeated. All these circumstances suggest that future methods of calculating
general perturbations will be based on the expansion of the perturbations directly in the position

vectors.

THE DIFFERENTIAL EQUATIONS OF THE PROBLEM

Putting

!
it
=l
1
w]

we shall make use of the Maxwellian expansion of the spherical functions as defined in terms of
multipoles. We have
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where 3,, &,, '+-, a_ are constant vectors, V is the del operator with respect to ¥, and the sums
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designate the sums of all terms as obtained from the first term by means of the permutations of

all n indices. In particular, we have

@)



]
ol

- 1 1
(1) =4 V==~ ,
¢ T 3)
- - 1 3505 o o 1 - o
$2) =3a-Va, Vo =4+ _pa pra, - -2  a, (4)
P o5 03
[ - 1 15 & & 5 4 a2 5 3 o 5% o9 om0 o5 o o
#(3) =4 -Va, Va, V== -~ p-a p-a,p a;+ _(paa, a;+p°a,a;'a +0°a;a"a,), (5)
P o7 05
- oo o= - o1 105 o o = = = = = =
4 _ — .
P4 =3d Ve, Va, Va4V-ﬁ_+_gpalp a, pra; p-a,
S %-3,5-3,3,+3, +7-3,7'3,8,°3,+7°3, p'3, 5,3
—_7(p2p314+p3p124 1 P8, 8378,
Je)
+ P al,o a422-a3+p a;_,p-a“al aa+p a, p a4a1 az)
+E (a,-a, a,*a, +a,"a, a;+a; +a;a, a,-a,). (6)

The gradient of the spherical function ¢ is obtained from the Maxwellian expansion of
#n*1)  simply by replacing the moment 3 by the idemfactor I. Thus, from Equations 2 to 6,
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The differential equation of the disturbed motion of the it" planet can be written in the form

2 n
2 K 1 1
d—<"+5")=v = —— + fm, Y, {-— = e (i, o =1, 2 » n) (11)
r? 7,407, & |3, +85,,] |5, +8%,]
crfi

Taking the equation

d2y w2

2 :Vi—r—-
dt? '

into account and introducing the vectorial differential operators
b, =V, exp(S?i-Vi), (12)
D, =V, exp(SEji-Vj) (13)

which perform the development of Equation 11 into a power series in the components of

37, (x 7 1,2,'+-,n), we obtain from 11 the differential equation for &7, in the form
d2srt 2
i 1 1 1
i 2 ? :
=p2 (D, -V,) —+ fm <—D._+D_.
dt2 i ( i i ri - o oi pai o ro (14)
a';!i

The perturbation vector 57, can be developed into a series with respect to the powers and
products of the disturbing masses. We put

- 1 = 1 - 1 5
Sr,:—' rC.L+—. Zr?ﬁ+a r';‘ﬁ’y+..., (15)

where ¢ is proportional to m, and 7,*# is proportional to m, mgs, ete. The factors in front of

the sums in Equation 15 are introduced to remove large coefficients in higher approximations.

We define ‘r’i“ﬁ, Y27, -+ in such a way that they remain invariant under the permutations of

the upper indices:

?‘;'B = ??a, ?‘:57: ™Ye - ... etc.

Symbolically,




where in performing the development and the symbolic "multiplications” the indices are not being
added, but written in a row. We also have

We now shall deduce the differential equations for determining perturbations of the form

T, oo, Fiea, Fopas, ... Gk e 1,200, m,

first under the assumption that there are no identical indices among &, p, q, -'-. Retaining only
the substantial terms, we have

2 - (Tk TP T4 TS Tkp Tka Tks TPa 'i.’?s Tas Zkpg Tkps Tkas 2pqs
8r, = (T + P 4 1 4 x]) + (rpP + Y 4T + 5% 4+ 10 1 T9%) 4 (XiPY o4 + T + TPd%)

i i i

+;.'li{pqs boere, (16)

o 2k - -4 -k - —pq =L .
80,; = (P, + A5, + A1) +(PF + O3] + A5D) + PR 4 . (17)
Substituting these values into
ST, -V, (5%, V)2
1 1 1 1
Di - Vi + 1 Vi + 2 vi + y
8p. . V. (3p..'V.)?
_ ji i ii
Dji _Vj + 1 V,. + 21 Vj +

and again retaining only the necessary terms, we deduce:

D, -V, =T{V, YV, + (F}PV, V, + FE-V, TPV, 7))
+ (TEPO.V, U, 4 TRP.V, T9.V, V. 4 FP9.V, TE.U, V + TIV, TPV, V, 4+ 759, T2V, T4V, V)
+ I:?l;pqs VY, e TERY T3V V4 TEPSV, TV VY, ?‘i(qs'v; TEV, V. + TRy, TV, Vv,

Tkp. Tas. Tka, —ps, ks, £ra. Tkp. T4.V Ts5.V. V
+ (t% Vi rd Vivi.f.ri Vi TP vV, Y, + T Vi re Vi\7i)+(ri Vi rd.V, TV, V,
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TPs. Tk. 4. Tas, k. —-p. Tk. IP. T9. s,
+ TPV TV rdV V41 v, 7kv, TP V. V) + T v, rPV, re-v, T3V, Vot (18)
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These developments of the operators D; -V, and D;; permit computation of the general plane-

tary perturbations up to the fourth order if necessary.

We will establish the differential equations for determining the perturbations up to the third
order. In our solar system occasions requiring the perturbations of the fourth order probably
will be very rare. However, in some cases of very sharp commensurabilities of mean motions,
the question remains open and further numerical investigations are necessary. Substituting
Equations 18 and 19 into 14 and retfaining only the typical operators, we have
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Comparing the terms of the same degree in the disturbing masses in the left and right sides of
Equation 20, we obtain the basic equations for determining the general perturbations up to the
third order:

1 =
dt? P Fi) ’ 1)
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The terms in the right sides of Equations 27 to 29 are the partial gradients of the sums composed
of the elementary spherical functions, with the moments equal to the perturbations in ¥, and
p; (i, k=1, 2, ---, n) . Making use of Equations 24 to 26, we obtain the following:
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In a similar way the expressions for F";qu and for its typical terms can be formed. The process
can be continued as far as necessary, until the perturbations become negligible. The restriction
that indices k, p, q, --- be different now can be removed.

INTEGRATION PROCEDURE

The typical differential equation which appears in the problem of the general perturbations
in the position vectors has the form

d2 %, X, 3% T.T, -
i i i i _ .2
R T N S ) PP T (40)
dt? r3 r3
1 1
where
X =Tk Tkp Tkea ...
1 1 1 1
o - 5 —k
F. = Fk’ =kp Pq ;

F, is a series with the periodic, secular, and mixed terms. Equation 40 is the variational
equation of the two-body problems.

To reduce the solutions of Equation 40 to quadratures, we shall make use of the substitution

X, = (s; +2w,) ?i-\_/'iJ(ZSi+3wi) dt + L, ﬁi' (41)

This differs from the substitution used by the author (Reference 1) previously. The substitution
of Equation 41 was chosen because of a simpler form to which Equation 40 is reduced thereby as
compared with the earlier exposition. It is unnecessary to retain the index i in the further
exposition; we can now omit it without loss of clarity.

It follows from Equation 41 that

dx ds dw df =
E: ,:EE+2E+—J(2S +3w)dt}r—(s F W)V + _R, (42)

23 2 2y 2 d
d7x _ |d%s 2d__-3“ d’ (2s +3w)dt+/‘_(3s +4w):| r+[ﬂ+ﬁ_f(2s +3w)dt:|v+._£R (43)
dt? dt2 dt2 r4 r3 At r3 dt?

Substituting expressions 41 and 43 into 40, we obtain the vectorial differential equation

2 2 2 2 2 - —
(d_s_+#_s+23_vv>;+ﬂ;+ <d_€+ﬁ_;> R = u°F, (44)
t



which can be integrated by quadratures. Forming the dot products of Equation 44 and

<l
X
s
o
X
LY
=l

and taking

oy =rSr
r-v = dt
into account, we have
2 2 - =
&s 4,8 na FGR, (45)
aez p2dt? Y 2
dw na .32 -
— = F-Rxr , 46
t — (46)
d?g  p? 2R.R
dt? r3 LEs (47)
We have from Equation 46
w=K; +B, (48)
where
B = na Fﬁx? dt; 49
Tz (49)

K, is the additive constant of integration. The integration of series in Equation 49 is performed
in a formal manner.

Equation 45 now can be integrated by using Hill's procedure (Reference 2). We obtain

s:Kl%cosf+K2%sinf+A, (50)
where K, and K, are constants of integration and
F.oxR) [(R.75F 2 /o L, oo
A :fh(F“”‘R) (&) 4 -J——~2 A (R.75F) dt. (51)
a (1-e?) m?¥1_e2 dt?

The vector ¥ is considered as a temporary constant and is replaced by T after the integration is
completed. The integrand is a trigonometrical series in the mean anomalies of planets and the

10




auxiliary mean anomaly { associated with _?'; it also can contain the purely secular and the mixed
terms. After the integration is performed, © has to be replaced by 4. Integrating the second
integral in Equation 51 by parts and replacing TxT by zero when it appears outside the integral
sign, we obtain

=L
o
=l

dt. (52)

24 o
Jﬂ’ R.Tx
dt? t

From Equations 46, 51, and 52 we deduce

dt = —J—lﬁ-vx

a (1—e2) ' ' (53)

As in Equation 49, the integration is performed in a formal manner.

In a similar way we obtain from Equation 47

§=K5%cosf+K6%Sinf+Z, (54)

where

Z:S n2__ (F.R) (R¥xT) dt

Y1-e? (55)
and K,, K, are constants of integration. From Equations 48 and 50, and considering

3 Y1-e2?

2
-—ent + 1
2

ro. .
— sin f + — sin f,

r
2 a 2Y1-¢2 a?

il

Jnicos f dt
a

J.né sin f dt - Vi1-e? . (cos f +—;—e cos? f> ,

a

we obtain

3 K,

J‘(gs + 3w) dt = J(2A + 3B) dt += (Ks—e Kl) nt + = (2 sin f +%e sin 2f>

[V
[T

n¥Yl-e

Y1-e? ;2
_.K_z_l_e-r_ <le+2¢osf+iecos2f> + K ,
n a2 2 2

(56)

where K, is the additive constant of integration.

The forms in Equations 30 to 39 of the disturbing terms in the right sides of the variational

-

equations require the decomposition of 7%, ?';P, tkpa, --- in the moving frame T, ﬁix?i, R;

11



rather than in the frame ¥,, v, R,. Setting

i

£T% + 7 Rxr® + LR (57)

1l

-
X

and taking
—0 —= _dr _na e sin f
rov=—-=——-2"°
dt }'1_92
= o na? ¥Y1-e2
v-R x =

into consideration, we deduce from Equation 41 that

_ na e sin f
§_(s+2w)r—Tez f(2s+3w) dt, (58)

2471 _o2
yo_naivl-e? §(25+3w)dt. (59)

r

The decomposition in Equation 57 was suggested by Popovic (References 4 and 5) and inde-
pendently by the author (Reference 6). In Popovic's work, the perturbations of the first and of
the second order in &, 7, { are determined.

The disturbing vector F also can be decomposed along 7, Bxt, and R. Perhaps from the
computational standpoint this decomposition is the simplest one; it appears in several theories
of the general planetary perturbations, either directly or as an intermediary step. Let us put

S:_I‘:x?,
T:F-l—éx?
From
-~ ndr - na? Vi-e? o
V=—=——r+ Rxr
rd 2
we deduce

12



and, replacing v by its decomposition as given above, we have—after some easy vectorial
transformations—

A= J‘(MS + NT) dt, (53"

where

o=
K]
7
par
3
—
|
|
-
S

M is a sine series in £ and £, and N is a cosine series in the same arguments. To obtain these
series, we have to obtain the development of

o |
"o

r r .
, —cos f, and = sin f.
a a

Equation 49 can be written as

B = &dt.
j‘ 1—62 (49‘)

The computation of integrands in Equations 49', 53", and 55 requires also the development of
some other expressions: for example, the odd powers of V7 the powers of a./r, ; the scalar
products T, T, and ?; -ﬁi ; and the triple products ﬁi -Fix?j. It seems that the simplest

and easiest way to obtain all these developments is by means of the single and double harmonic
analyses. The formulas

. - T
r. = A, (cos e.—e.) + B, sin €,
1 1 1 1 1 1

serve as a start. The representation of ,?, interms of the vectorial elements is very useful
in performing the double harmonic analysis.

DETERMINATION OF THE CONSTANTS OF INTEGRATION

Each perturbation

13



introduces six constants of integration. We designate them by

Kk,

ji’

Kl’_cli:, Kqui)q’ G, k, pq, *** = 1,2, =-,n; j = 1,2, +--, 6)

correspondingly. Consequently, the problem of determining the general perturbations by develop-
ing them into power series with respect to the masses introduces an infinite set of constants of
integration. Of course, with the increasing number of the upper indices these constants decrease

rapidly.

In the final expressions for the perturbations, the constants are combined to form a set of
only én independent constants; but this is not seen explicitly in a numerical planetary theory. At
each step the constants must be determined separately from some additional conditions imposed
on the elements or from the initial position and velocity vectors. Two types of elements are
being commonly used: the mean elements, and the elements osculating at the initial moment of
time. In the case of the mean elements the perturbations of the true longitude in the orbital plane,
as defined by these elements, shall not contain the constant term, the purely secular term, and
the terms with periods equal to the period of revolution of the planet. The perturbations in the
"third coordinate,' normal to the orbital plane, shall not contain the terms with periods equal to
the revolution of the planet. The values of the mean elements, however, are not unique. They
depend on the choice of the eccentric, true, or mean anomaly as the basic independent variable
to be used in developing the perturbations of a given planet.

Hansen (Reference 7) made use of the eccentric anomaly in his theory of minor planets. Hill
(Reference 2) preferred the true anomaly. In both choices we gain speed of convergence of series
giving the perturbations of the first order, in comparison with the choice of the mean anomaly.
However, the road to computation of the higher order perturbations of the whole planetary system
by either of these two choices will be blocked so effectively that all the gains in the first approxi-
mation appear to be negated by the difficulties encountered in computing these higher order per-
turbations. For this reason the use of the undisturbed mean anomalies £,, {,,---, 4, and
consequently of the universal variable, time, is highly recommended in the planetary theories.
This has been done already by Hansen and by Hill in their theories of Jupiter and Saturn. In con-
nection with this statement we say that the elements are mean if there are no terms of the form

K, Kt, K() cos 4, K(s) sin 4

in the perturbations of the true longitudes with respect to the undisturbed orbit planes and if there

are no terms of the form

K(¢) cos £, K(5) sin 4

in the "'third coordinates' (.

We express the perturbations in the true longitude in terms of the perturbations along r°,
REx ©°, and R. Taking into account the equations
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¥ g
32 r = 32 ? = Ex_'o, a2 ;’ = -7T To »
d3r? dr oA A2
’83';.'— 83? - 63? :—;0, 83?=~r§x?o’
ors dr2 Jx dr 9A2 A3

we can write

1

5T = £70 4 n BxT0 + LR = <8r-%r JORENPRIC +) 0. (r I PN

or

1

R LT ICEE L ER I

N

n=r1rdN+28r 5)\—%;5}\3 .

Solving these two last equations with respect to 5r, 8§\ gives

Substituting
(gk + &P v £9) + (£kp 4 gray £ak) yogRea L

L343
|

3
1l

(nk + TP 4 nq) + (nkp + P9 g qu) + MEPe L

SA = Ak 4 Akp 4 AkPa L.

into Equation 63 gives:

r A% ¢

> RxTO + gﬁ

(60)

(61)

(62)

(83)

(64)

(65)
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kpq
aepa = I22 L gk pa | gpopak y g9 nke) o 2 (gk gp g 4 £P £k 4 £ % P)
r r

__1? (£4P 79 + gPa k4 gak 7P) ___25_ nk P e .
r r

(66)
Putting
a? n. *'/1 - e?
n, Y1 - e Wezm — J(zAI; + 3B¥) dt, (67)
1 1 1 r“
afn. l—ef §?77‘i‘+§‘i‘7;’i’

n, ]/1 - e? Wkp =~ — j (2A%P + 3B‘;P)dt R —— (68)

" af n; y1 —e? k " 1 k 4pq p 1ak qa pkp

n; YT - eZ Whra=- — (28%P9 + 3Bee) dt - — (6% m2a + £8 M3k 4 £3 kP

i

2 Ly k k 2
t (6% £p m3 4 £P £9 mk 4 £9 £k ng)—ﬁ(gip 79 + €99 k4 £9 n?)-r—s n§ M8 ng, (69)
; ;

i

substituting these values into Equations 64 to 66, and taking 59 into consideration, we obtain

Ak 3 <a. )2 ll( 1
- =2 ! — Kk, + e, K¢ Yy ¢t ——— -2 (2 sin fi +—e; sin 2fi>
ni l—ef l’li I'i ( 3i 11) 1 ni l—ef 2
Kl;i l_e? 1 1 3 k k
+ o] <2 cos fi+Eex +5 €, cos 2fi> +— K§; + W, ('70)
}\l'(p 3 a. 2 Kl{p
L == <_‘> ( }{kri’ +e, K';l:) n, t- - <2 sin f, +=e, sin 2fi>
n, "1-e2 N n, Y1-e?
V1_o2 2
-—————Klz(? L-ei 2 cos f +l e +le cos 2f Jr—a—i Kkp +WEP (71)
+ n, i Ty % Tyt i F2 4 i
Akpa 3 7a,\? Kjpa 1
.t =2 <_’> (— KkPa 4 e, K'l‘l‘i’q) n; t S L <2 sin f; + ~ e, sin 2fi>
n, Y1-¢? AT n, ¥1-e? 2
Kg?q Y1-e2 1 1 a? x «
i i = 2 1 q
+———ni (2 cos f, + 2 e, + 5 e, cos 2f | + 2 K329 +WiPd, (72)

i
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We shall make use of the developments

P
r,
1
3 = Pq pq pq
(a.) cos qf, C39 + C%% cos £, + C§Y cos 24, + ,
1

N =

r.\P
<a—l> sin qfi = SFl’ci1 sin fﬁi + 857 sin Qfﬁi + oo

i

The coefficients in these developments are computed either by some analytical classic procedure
or by means of a harmonic analysis if the eccentricity is not too small.

The terms of the form

K K; t, Kgc) cos 1, K(is) sin £ (73)

0i’

must be absent in the developments of Equations 70 and 71. We have, keeping only the substantial
terms,

k _ .k k k kg
wk=ak + 85 n t+ak cosd +pY sind + , (74)
kp - qkp kp kp kp H e
WhP = ak® +B%P n; t + ak? cos /Ei +B%? sin fﬂi + , (75)
kpa = gkpq kpq kpq kpa gj
wk akPd +BEPA 0 t + akP9 cos 2, +B%Pd sin 4+ . (76)

In the process of computing the coefficients a« and 8, the machine rejects automatically all the
useless terms unless we decide to obtain a complete development of the perturbations in the true
longitude. The conditions for the absence of the terms 73 in the right sides of Equations 70 and
71 lead to the equations

K, ¥1-e? o1 , 1 1 02 1 2,0
L GRS TRE L= 3 IS SR (77)
. 2501 4 Lo go2 B8, =0
o vioer Lo T2 rAT (78)
K, /1 - e? 01 , 1 0,2 2,0
+—n_— (2C1- +Eecl'> +C; ' K4+a1=0’ (79)
2 ;20 (-K, +eK,) 48, =0
+5-C5 (-K; +eK)) +8,=0. (80)
Separating in z%, zkp, zkeq,... the terms with the argument ¢, we have
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ko sind+ ...

k - ~k
Z* c cos*f’,+sli ,

i 1i

ZkP = ckP cos £ + s*® sin £ + ...
i 1i 1i 4

Z%p9 = ckPa cos 4 + skP9 sin £ + .- (i, kp,q **+ = 1,2 =, n);

and the conditions for the absence of terms with the argument € in ¢k, (¢ke, ({kp9, ... lead to
K, Chlsc, =0, (81)
K, sb1 +s, = 0. (82)

The lower index i and the upper indices k, p, q,--- are omitted in Equations 77 to 82. Evi-

dently, this is not causing any ambiguity.

CONCLUSION

The results given in this article represent the extension and completion of the results given
in the author's previous articles on this subject. The theory given here also can be considered
as a modification and generalization of Hill's planetary theory, with the latter's inconveniences
removed. The interdependent constants of integration peculiar to Hill's theory do not appear in
the present exposition. The solution is given in a form which permits us to write immediately
the differential equation for the general perturbations proportional to any prescribed product of
masses. Moreover, the vectorial formalism permits penetration into the structure of higher
order effects without great difficulty. Programming also is facilitated by the repetition of the

homogeneous operations.

The formula of Equation 57 permits us to obtain easily the decomposition of ¢, ¥4, --
along the axes of the inertial systems if it is considered necessary.

On the basis of experience obtained at Goddard Space Flight Center, computing the pertur-
bations of a given order for one planet might be expected to require only a few minutes. The
simplicity of the methods for the general perturbations in the position vectors suggests that such
methods will constitute one of the principal approaches to the problem in the not too distant future.

(Manuscript received November 1, 1964)
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Appendix A

Basic Notations

D, =V, exp (8T, ' V))

D, =V, exp(STo‘J.i -Vj): —V’. exp(SZz'ji 'Vj)

f = gravitational constant

m, = mass of the i*" planet; the mass of the sun is put equal to one
ﬁ; = unit vector normal to undisturbed orbit plane of the i*" planet
r, = |7

T, = undisturbed position vector of the i*" planet

8r, = perturbations in position vector of the i‘** planet
re = perturbations in r; proportional to m,

T2 = perturbations in T, proportional to m, m,

'r’:;f”’ = perturbations in T; proportional to m,mgm,

Vv, = del operator with respect to ¥

. dr,

Vi T Tae

2 = f(l+m,)

Pey = 18,1

Ek; = Fk_?i

88, = 8T, -8T,

A A

pf = NPT

PeR? = Tefr_yesy
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